

Synthesis Fundamentals 73

Individual unit generators and methods of interconnecting them will be demonstrated
in the next three chapters to explain the synthesis of specific sounds.

With signal-generating models, the third Jevel of specification, the musician choos-
es from a set of available synthesis techniques. In this case, the computer is prepro-
grammed with the appropriate interconnections of unit generators. The musician selects
a technique and specifies the parameters necessary to control it. Available sound syn-
thesis techniques include additive, subtractive, distortion (nonlinear), and granular syn-
thesis. Additive synthesis, described in this chapter, is the summation of several simple
tones to form a complex one. In subtractive synthesis (chapter 6), the algorithm begins
with a complex tone and diminishes the strength of selected frequencies in order to real-
ize the desired spectram. Many of the additive- and subtractive-synthesis instruments
use data derived from the analysis of natural sound. Chapter 7 will describe various syn-
thesis-from-analysis techniques. Distortion synthesis (chapter 5) encompasses several
techniques where a controlled amount of distortion is applied to a simple tone to obtain
a more complex one. A widely used member of this class of techniques is frequency
smodulation, which can be thought of as the distortion of the frequency of a tone. Another
technique, waveshaping, is the distortion of the waveform of a tone. Granular synthesis
(chapter 8) assembles its sounds from a multitude of bursts of energy that are too short
to be perceived musically by themselves.

The last level of instrument specification is the physical model (chapter 9). This
method requires extensive technical research on the part of the music systems pro-
grammer. The musician is given a model of a sound production process with variable
parameters to achieve a particular sound. For example, the software might simulate a
violin with a list of parameters given in terms of some of the physical attributes of the
modeled instrument. The musician could then alter the character of the tone by chang-
ing such parameters as the volume of the body, the bowing point, the placement of the
bridge, and so on. The primary benefit of a physical model is to give the musician a
means to predict intuitively, to some degree, the effect of timbral modification. For
instance, an increase in body volume would be expected to lower the frequency of many
of the resonances in the tone. »

Physical models have been created of many instruments and of speech. In addition,
they have been used for describing processes that modify sounds, such as the specifica-
tion of reverberation on the basis of the physical characteristics of a room. (See chapter
10) As it continues to develop, this method is becoming a more widely available means
of providing musicians with a more intuitive approach to computer instrument design
than with the direct specification of the parameters of a signal-processing algorithm.

4.2 SIGNAL FLOWCHARTS

Unit generators will be used to define the fundamental synthesis techniques presented
in this, the central portion of the text. A signal flowchart, such as the example in figure
4.1, is a graphical representation of the way in which unit generators are interconnect-
ed to form an instrument. The symbols for the various unit generators will be given as
they are introduced throughout the text.

3
i

A AR Lt o ot

74 COMPUTER Music

AMP. INDEX
DUR Fi R’EQ1
UNIT UNIT
GEN GEN
FREQ2

1 ADDER
SUBTRACTER (- Je—

UNIT GEN

MULTIPLIER

FIGURE 4.1 Example of a signal flowchart.

There are two basic rules that apply to the interconnection of unit generators: (1) An
output of a unit generator may be connected to one or more input(s) of one or more other

it enters the adder. This js indicated by a minus sign placed near the arrow connecting
the subtrahend to the adder.

The signal flowchart shown in figure 4.1 includes a multiplier and a divider, as well.
Multiplying a signal by a constant with a value greater than 1 increases the amplitude of the

Synthesis Fundamentals 75

signal; this process is called amplification. The reverse process, attenuation, is obtained
through multiplying by a constant less than 1. Multiplication and division on a general-pur-
pose computer can take substantially longer to perform than addition or subtraction; there-
fore, the instrument designer tries to minimize the number of these operations. However,
many modem systems incorporate special hardware that performs multiplication and divi-
sion very rapidly so that this consideration becomes less important. The use of division
requires special care. To avoid errors, the instrument designer must make certain that the
divisor can never assume a value of 0 because the resulting quotient is infinite. On some
systems, such an error can cause the synthesis program to cease operation, or at least gen-
erate an unexpected sample value, producing an associated “click” in the sound.

The instrument diagrammed in the example flowchart is controlled by six parameters
indicated by the mnemonics such as AME, DUR, and so on. The value of each parameter
is passed from the main program to the instrument each time the instrument is called upon
to produce a sound. Parameters are best labeled with descriptive mnemonies. For exam-
ple, the parameter that controls the amplitude of an instrument is often designated AMP

Every instrument must have at least one output. The flowchart symbol for an out-
put is 2 small, empty circle usually located at the bottom of the chart. There may be mul-
tiple outputs usually corresponding to a multichannel audio system.

4.2 THE OSCILLATOR

The unit generator fundamental to almost all computer sound synthesis is the oscillator.
An oscillator generates a periodic waveform. The controls applied to an oscillator deter-
mine the amplitude, frequency, and type of waveform that it produces. The symbol for
an oscillator is shown in figure 4.2. The symbol inside the oscillator (WF in this case)
designates the waveform of the oscillator. The symbol can be a mnemonic of a particu-
lar waveform or a drawing of one cycle of the waveform. The numerical value that is fed
into the left input sets the peak amplitude of the signal. The numerical value applied to
the right input determines the frequency at which the oscillator repeats the waveform.
Depending on the system, the frequency can be specified in one of two ways: (1) an actu-
al number of hertz, or (2) a sampling increment—a number proportional to the fre-
quency, which will be explained below. The input on the right side of the oscillator,
PHASE, determines at which point on the waveform the oscillator begins. PHASE is

AMP
FREQ

PHASE

FIGURE 42 Flowchart symbol for an oscillator. The phase input is often not used.

76 COMPUTER pyy

» Sine, og
every sample. This method (direct evaluation) is prohibitively slow for most functiong.

For the sake of efficiency, most digital oscillators use a stored waveform: 5 Waveforn,
that is evaluated prior to the generation of any sound. The computer caleulates the valye
of many uniformly spaced points on a cycle of the waveform, and storeg them in copy,_
puter memory as a bloek called a wape table. Thus, a wave table consists of a long

o
©
©
©
o

f
I
n
O
o+]
>

§§

-~ 0.0368

Synthesis Fundamentals 77

is given an initial phase value, which denotes the first entry in the wave table to be used.
On every sample the oscillator algorithm obtains the current phase value (¢} and adds it
to an amount that is proportional to the frequency of operation. The new phase value
determines the entry used to calculate the next output sample. The amount added to the
phase on every sample is called the sampling increment (SI): the distance in the wave
table between successive entries selected by the oscillator. When the phase value exceeds
the number of the last entry in the table, it is “wrapped around” to a point near the begin-
ning of the table by subtracting the total number of table entries from that phase. In this
example, the number of the last entry in the table is 511. If ¢ = 512 after adding the sam-
pling increment, then the oscillator algorithm would modify the phase so that ¢ = ¢ — 512
= 0, thereby returning the phase to the first Jocation of the table. Hence, the oscillator
algorithm can be thought of as scanning the wave table in a circular fashion.

The two varieties of digital oscillator commonly encountered in computer music are
the fixed sampling rate oscillator and the variable sampling rate oscillator. The remain-
der of this section describes the operation of the fixed sampling rate oscillator. In mod-
ern practice, variable sampling rates are used for sound modification and will be
described in section 10.3A. .

Using the wave table in figure 4.3, suppose that the sampling rate is 40 kHz and the
oscillator is programmed to scan through the wave table with a sampling increment of
1; that is, one entry at a time. There are 512 entries in the table and the table contains
one cycle, so it would take 512 samples to produce one cycle. Therefore, the funda-
mental frequency of the oscillator would be 40,000 + 512 = 78.13 Hz.

If a tone one octave higher is desired, the oscillator would be programmed to
retrieve values from every other entry in the wave table (81 = 2). Because the oscillator
would go through the wave table twice as fast, there would be half as many samples per
cycle (256), and the fundamental frequency of the oscillator would be 40,000 + 256 =
156.25 Hz. This result is twice as large as the previous example, which makes sense
because the wave table is scanned at twice the speed.

To obtain a frequency f, using a wave table with N entries, the required sampling
increment is

f
SI=N2
fs

For example, given N = 512 and a sampling rate (1,) of 40 kHz, a 2.5-kHz signal would
require a sampling increment of 32. In other words, if the oscillator starts at entry 0 in
» the wave table, sequential entries 0, 32, 64, . .. will be taken from the wave table.
Except for certain select frequencies, the sampling increment will not be an exact
- integer. For instance, with N = 512, generating a 440-Hz tone at a 40-kHz sampling rate
Iequires a sampling increment of 5.632. Suppose, in this case, that the oscillator starts at
aphase equal to 0. On the first sample, it retrieves the waveform value from that loca-
1. On the next sample, the phase is 0 + 5.632 = 5.632. How does the oscillator treat
Qhase with a fractional part, if the entries in the wave table are marked by integers?
re are three techniques: truncation, rounding, and interpolation.

78 COMPUTER pyygc

In truncation, the fractional part of the phase is ignored in determining the
table entry, so that in this case the value is taken from entry 5. To caleulate the next
phase, however, the oscillator includes in its addition the fractional part of the Current
phase. Thus, on the next sample, the phase is 5,639 + 5.632 = 11.264, causing the gap,_
ple to be taken from entry 11. The process continues on each successive sample,

When rounding is used, the entry taken is the value of the phase rounded t, the
nearest integer. Thus, for the example above, the first three wave table values are taken

larger the table size, the better the signal-to-noise ratio, (See section 3.2.) Let k be
related to the table size (N by k = log,N. For example, the value N = 519 = 2° gives
k = 9. If the entriesin the table are stored with sufficient precision to prevent significant

data converters, an oscillator using a 512-entry table, for example, would produce tones
with no worse than 43, 49, and 96 dB SNR for truncation, rounding, and interpolation,
respectively.

The actual SNR of 2 sound would be determined by combining the quantization
noise du

putation time or larger table size perform better. The performance of any method can be
improved by increasing the table size, and so the digital-oscillator designer is faced with a

Synthesis Fundamentals 79

4.4 DEFINITION OF THE WAVEFORM

Generally, the musician need not directly specify a numerical value for each location in the
wave table. Computer music programs enable a more simple method of entry: either by
entering its representation versus time or by specifying which frequency components it
contains. The definition of the waveform versus time can be made by specifying the math-
ematical equation that relates the amplitude of the desired waveform to its phase. The
waveform versus time can also be defined by a piecewise linear means. Here, the wave-
form is defined by specifying a number of representative points on the waveform. These
points, called breakpoints, are the points where the waveform changes slope. When filling
the wave table, the software connects the breakpoints with straight lines. In most pro-
grams, breakpoints are specified as a pair of numbers: phase and amplitude at that phase.

The specification of waveforms in terms of amplitude versus time can, however,
sometimes lead to unexpected results. If, at the frequency at which it repeats, the wave-
form contains any harmonics above the Nyquist frequency, they will be folded over
{aliased), thereby producing unexpected frequencies in the sound. Suppose in a system
with a 20-kHz sampling rate, a musician specified a sawtooth waveform (figure 4.4a) and
used it in an oscillator programmed to produce a tone at a frequency of 1760 Hz. The
sixth harmonic of 1760 ¥z would be 10,560 Hz, which is above the Nyquist frequency
of 10 kHz. Therefore, the sixth harmonic would fold over to 20,000 ~ 10,560 = 9440 Hz.
The seventh harmonic, expected at 12,320 Hz, would sound at 7680 Hz, and so on.
Figure 4.4b illustrates the-intended spectrum of the sawtooth wave and figure 4.4¢c

klltl:llllli.f

fg fs
2

b)
A

l‘llllih”: f
fs

c) 2
’:FICURE 4.4 (a) Sawtooth waveform; (b) its expected spectrum at a fundamental frequency of
60 Hz; and (c) its actual spectrum after conversion at a 20-kHz sampling rate.

80 COMPUTER MUS}

shows how unexpected components appear in the spectrum at the output of the
converter. A sawtooth waveform has a significant amount of €nergy in jtg upper by
monics, and so the resulting spectrum would not sound completely harmonje, To avoig
foldover when specifying waveforms in terms of amplitude Versus time, gpe shoulg
define a waveform with little significant energy in the upper harmonics. Cenerally) this
requires the avoidance of waveforms with steep slopes, sharp points, and other abrupg
changes of slope or value (see section 2.6).

A safer way to specify a waveform is in terms of jtg spectrum. Here, the Instrumeny
designer specifies the amplitude, the partial number, and, if desired, the phase of each

D/g

oscillator accordingly. For example, on a system with a 40-kHz sampling rate, the funda.
mental frequency of a5 oscillator producing 10 harmonies should not exceed 2 kH,.

envelope generator (figure 4.5b) controls the amplitude of the oscillator, so that the
instrument produces a fixed waveform enclosed in the envelope (figure 4.5¢).

The simplest amplitude envelope (figure 4.6) has three segments: the attack, which
describes how the amplitude rises during the onset of the tone; the sustain, which describes
the amplitude of the tone during jts steady state; and the decay, which describes how the

Synthesis Fundamentals

AMP

RISE

FREQ

"\

i

a)
FIGURE 4.5 (a) Simple com
waveform (c).

A
?

ATTACK

DUR
TIME Y_.ZY

81

DECAY
TIME

/N

c)

puter instrument, with its amplitude envelope (b) and its output

tone dies away. An envelope generator has at least four input parameters: rise time which
is the duration of the attack segment, amplitude which sets
attack, total duration of the envelope,

and decay segments need to be specified. Depending on the type of envelope generator,
this can be done in one of two ways. Some envelope generat

the value at the peak of the
and decay time. In addition, the shapes of the attack

ors determine the segment

SUSTAIN

S

DECAY

S

> TIME

1
DECAY.
TIME ‘)I

predetermined shapes. For example, severa] languages implement 5 unit generatoy calleq
“linen,” which realizes envelopes with strictly linear attack and decay segments,

On many systems, an envelope generator can be used as 3 signal processor: A signg]
is applied to the amplitude input of the envelope generator. This process results ip 4,
output signal that is the input signal encased in an envelope. The instrument of figure
4.7 is identical i function to that of the one in figure 4.5a. Instead of driving the ampl;.

DUR
RISE TIME DECAY TiMe

FIGURE 4.7 Another way of imparting an envelope to a signal.

Synthesis Fundamentals 83

A A
14 1 Jt
A5T .75
50+ S04
257 25
TIME > TIME
a) c)
A A
0 0
—20- -20 1
~40+ —40 4
~60+ —60 1
TIME TIME
b) d)

FIGURE 4.8 Decay functions; (a) linear, (b} linear in dB, (¢} exponential, and (d) exponential in dB.

musician must specify the maximum and minimum values of the shape. The ratio of the
two is important because it sets how quickly the amplitude changes—that is, the rate of
change of the segment in dB/second. If it is desired that the minimum value result in an
inaudible signal, it may not be a good strategy to make the value arbitrarily small.
Suppose that an exponential attack is to last 0.1 second and the ratio is chosen as
1:1,000,000 (120 dB). This is a rate of change of 120 + 0.1 = 1200 dB/second. Further
assume that the system has 16-bit D/A converters for a dynamic range of about 96 dB.
Depending on the amplitude of the tone, the envelope will have to rise at least 24 dB
before the converter begins to produce a time-varying signal. Because the envelope
rises at 1200 dB/second, there will be at least a 24 dB + 1200 dB/second = 0,020 sec-~
ond additional delay in the onset of the tone. Therefore, the ratio chosen should be no
greater than the maximum amplitude value of the system—in the case of 16 bits,
32,768:1; in the general case of N bits, 2¥-1:1.

The duration of the attack and decay segments also has a great influence on timbre.
In acoustic instruments, the attack is normally somewhat shorter than the decay. A very
short attack is characteristic of percussive sounds, whereas longer attacks are found in
acoustic instruments, such as the pipe organ, which produce sound by splitting a stream
of air across the edge of a surface. Many acoustic instruments have longer attacks on
lower pitches. Instruments that must build up a long column of air such as the tuba tend
to have longer attacks. Synthesizing tones with short decays and relatively long attacks

e s

84 COMPUTER M Usic

(]
ATTACK = DECAY SUSTAIN 'RELEASE
FIGURE 49 ADSR envelope.

produces an effect similar to playing a tape recordin g backwards. Of course, this may be
desirable under some circumstances.

A refinement to the simple envelope generator shown in figure 4.6 is the insertion
of a fourth segment between the attack and sustain. An envelope of this type (figure 4.9)
is called ADSR, representing its svegmentsmattack, decay, sustain, and release, The

section 4.3) is generally used.

Musicians have also used this configuration to realize musical events that are repe-
titions of a tone, by programming the envelope-generating oscillator to go through sev-
eral cycles during the duration of the event. For example, setting the frequency of the
oscillator to 3 + duration produces three repetitions.

A serious disadvantage of using an oscillator instead of an envelope generator is that
the attack and decay times will be altered when the duration is changed. Unless the

The first use of envelope generators was to synthesize functions of time that con-
trolled the amplitude of an oscillator. In computer music, other functions are needed to

Synthesis Fundamentals 85

AMP
1/DUR

FREQ

FIGURE 4.10 The use of an oscillator as an envelope generator.

control other parameters of a sound such as the frequency variation of an oscillator. As a
result, many systems implement interpolating function generators to provide greater
flexibility in realizing functions of time. These are often represented on a flowchart by a
rectangle with 2 mnemonic or picture of the function inside. In using these, the musi-
cian specifies the functions of time by listing representative points on the function. For
each point a pair of numbers is given: functional value and time elapsed since the pre-
vious point. (Some systems use the convention: functional value and time elapsed since
the start of the function.) During synthesis, the function generator calculates values by
interpolating between the breakpoints. The interpolation can be either linear or expo-
nential, depending on the particular function generator used. For example, one could
obtain a smooth glissando by specifying exponential interpolation for a function driving
the frequency input of an oscillator. In this case, the function values would be given as
the frequencies at the end points of the glissando.

